翻訳と辞書
Words near each other
・ Batella
・ Batella (Lymantriidae)
・ Batelov
・ Batelusia
・ Batem
・ Bateman
・ Bateman 365
・ Bateman baronets
・ Bateman Equation
・ Bateman function
・ Bateman Hardware
・ Bateman Hotel (Lowville, New York)
・ Bateman Island
・ Bateman Manuscript Project
・ Bateman Park
Bateman polynomials
・ Bateman Pulsed Column
・ Bateman transform
・ Bateman's
・ Bateman's 'Great Landowners' (1883)
・ Bateman's principle
・ Bateman, Saskatchewan
・ Bateman, Texas
・ Bateman, Western Australia
・ Bateman, Wisconsin
・ Bateman-Griffith House
・ Batemannia
・ Batemans Bay
・ Batemans Bay (New South Wales)
・ Batemans Bay High School


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Bateman polynomials : ウィキペディア英語版
Bateman polynomials
In mathematics, the Bateman polynomials are a family ''F''''n'' of orthogonal polynomials introduced by . The Bateman–Pasternack polynomials are a generalization introduced by .
Bateman polynomials are given by
:F_n\left(\frac\right)\cosh^(x) = \cosh^(x)P_n(\tanh(x))
=\right)\cosh^(x) = \cosh^(x)P_n(\tanh(x))
showed that the polynomials ''Q''''n'' studied by , see Touchard polynomials, are the same as Bateman polynomials up to a change of variable: more precisely
: Q_n(x)=(-1)^n2^nn!\binom^F_n(2x+1)
Bateman and Pasternack's polynomials are special cases of the symmetric continuous Hahn polynomials.
==Examples==
The polynomials of small ''n'' read
:F_0(x)=1;
:F_1(x)=-x;
:F_2(x)=\frac+\fracx^2;
:F_3(x)=-\fracx-\fracx^3;
:F_4(x)=\frac+\fracx^2+\fracx^4;
:F_5(x)=\fracx-\fracx^3-\fracx^5;

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Bateman polynomials」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.